eb6bf75 Add MINF to represent minus infinity.
~jmbr pushed to ~jmbr/maxima-interface git
Maxima is a featureful and versatile symbolic computation package. While it runs on most (possibly all) Common Lisp (CL) implementations, using it as an external CL library is not entirely straight-forward despite the fact that the functionality exists. The purpose of this package is to provide a simple interface between Common Lisp and Maxima and facilitate its use.
The simplest way to install this package is to compile and install Maxima
from source and add the directory /path/to/maxima/src
to the ASDF registry.
Next, add maxima-interface
's directory to the ASDF registry (see ASDF
documentation
for details).
The expressions returned by Maxima can be rendered in LaTeX using either
Emacs, Jupyter notebooks, or printing the LaTeX strings to a stream. The
precise output is governed by the special variable *latex-output*
which can
be :emacs
, :jupyter
, or :console
.
The function that accomplishes this is named latex
. The way a symbol is
represented in LaTeX can be controlled by the maxima::texword
property of
the symbol's property list (see examples below).
LaTeX can be rendered in a resizable fashion within Emacs using tex2svg
in
order to convert LaTeX strings to SVG files. This requires the custom patch
to SLIME included in the file slime.patch as well as the
tex2svg
utility
from MathJax.
Using
common-lisp-jupyter
it
is easy to interface with a Jupyter notebook. Just run the Common Lisp kernel
and start using maxima-interface
.
This is the default setting. It outputs the LaTeX string corresponding to the given expression.
The aim of this interface is to translate and evaluate expressions back and forth from Common Lisp to Maxima's internal representation as seamlessly as possible.
diff
Takes the (partial) derivative of an s-expression with regard to a variable, possibly more than once.
MAXIMA-INTERFACE-USER> (diff '(sin x) 'x)
(COS X)
MAXIMA-INTERFACE-USER> (diff '(* (expt x 2) (expt y 3)) 'x 2)
(* 2 (EXPT Y 3))
integrate
Evaluates the definite or indefinite integral of an s-expression with respect to a symbol.
MAXIMA-INTERFACE-USER> (integrate '(* (exp x) (sin (exp x))) 'x)
(* -1 (COS (EXPT (EXP 1) X)))
MAXIMA-INTERFACE-USER> (integrate '(/ x) 'x 1 '(exp 1))
1
expand
Expands products.
MAXIMA-INTERFACE-USER> (expand '(expt (+ x y) 2))
(+ (EXPT X 2) (* 2 X Y) (EXPT Y 2))
simplify
Applies trigonometric and rational simplifications.
MAXIMA-INTERFACE-USER> (simplify '(/ (1- (1+ x)) 1))
X
MAXIMA-INTERFACE-USER> (simplify '(+ (expt (cos x) 2) (expt (sin x) 2)))
1
limit
Takes the limit of an s-expression with regard to a symbol.
MAXIMA-INTERFACE-USER> (limit '(/ (+ (expt x 3) x) (* 2 (expt x 5))) 'x 'inf)
0
MAXIMA-INTERFACE-USER> (limit '(/ (sin x) x) 'x 0 'plus)
1
factor
Factorize an expression.
MAXIMA-INTERFACE-USER> (factor '(+ (expt x 2) (* 2 x y) (expt y 2)))
(EXPT (+ X Y) 2)
MAXIMA-INTERFACE-USER> (factor '(- (expt x 2) (expt y 2)))
(* -1 (+ (* -1 X) Y) (+ X Y))
maxima-init
This function is called when the module is loaded. It instructs Maxima to set the path names for the packages that will be loaded on-demand when carrying out different types of operations (e.g., simplification, eigendecompositions, etc.).
maxima-run
Evaluates a Maxima expression passed as a string and prints the result.
MAXIMA-INTERFACE-USER> (maxima-run "assume(sigma > 0)$" :display2d t)
[sigma > 0]
MAXIMA-INTERFACE-USER> (maxima-run "integrate(exp(-x^2/(2*sigma^2)), x, -inf, inf);" :display2d t)
sqrt(2) sqrt(%pi) sigma
MAXIMA-INTERFACE-USER> (maxima-run "exp(-x^2/(2*sigma^2));" :display2d nil :return-expression t)
%e^-(x^2/(2*sigma^2))
((MAXIMA::MEXPT MAXIMA::SIMP) MAXIMA::$%E
((MAXIMA::MTIMES MAXIMA::SIMP) ((MAXIMA::RAT MAXIMA::SIMP) -1 2)
((MAXIMA::MEXPT MAXIMA::SIMP) MAXIMA::$SIGMA -2)
((MAXIMA::MEXPT MAXIMA::SIMP) MAXIMA::$X 2)))
MAXIMA-INTERFACE-USER> (maxima-run "trigsimp(cos(x)^2 + sin(x)^2);")
1
maxima-read
Takes a Maxima expression (represented as a string) as input and returns its internal representation in (Maxima) Lisp.
MAXIMA-INTERFACE-USER> (maxima-read "x^2$")
((MAXIMA::MEXPT) MAXIMA::$X 2)
maxima-eval
Evaluates the internal Lisp representation of a Maxima expression and returns the internal Lisp representation of its result.
MAXIMA-INTERFACE-USER> (maxima-eval '((maxima::$expand)
((maxima::mexpt) ((maxima::mplus) maxima::$x maxima::$y) 2)))
((MAXIMA::MPLUS MAXIMA::SIMP) ((MAXIMA::MEXPT MAXIMA::SIMP) MAXIMA::$X 2)
((MAXIMA::MTIMES MAXIMA::SIMP) 2 MAXIMA::$X MAXIMA::$Y)
((MAXIMA::MEXPT MAXIMA::SIMP) MAXIMA::$Y 2))
maxima-print
Prints the internal Lisp representation of a Maxima expression in
human-readable form to output-stream
(which is *standard-output*
by
default).
The keyword argument display2d
is a boolean indicating whether the
representation should be done in 2D or not. The keyword argument
return-expression
is another boolean that determines whether the original
expression should be returned by maxima-print
.
MAXIMA-INTERFACE-USER> (maxima-print '((maxima::%integrate maxima::simp)
((maxima::mexpt) maxima::$%e
((maxima::mtimes) -1 ((maxima::mexpt) maxima::$x 2)))
maxima::$x 0 maxima::$inf)
:display2d t)
inf
/ 2
[ (- 1) x
I %e dx
]
/
0
The document Macsyma’s General Simplifier: Philosophy and Operation by R. Fateman is a useful guide to better understand the inner workings of Maxima.
It is sometimes useful to execute :lisp (trace meval)
inside a regular
Maxima session (i.e., the REPL you get when invoking maxima
from the
command line) to see how commands are processed.
Subscribe to the
maxima-interface-devel
mailing list for development discussion and to send patches related to the
project. For help sending patches to this list, please consult
git-send-email.io.